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Abstract. In this paper a simulated annealing algorithm for continuous global optimization will
be considered. The algorithm, in which a cooling schedule based on the distance between the
function value in the current point and an estimate of the global optimum value is employed, has
been first introduced in Bohachevsky, Johnson and Stein (1986) [2], but without any proof of
convergence. Here it will be proved that, under suitable assumptions, the algorithm is convergent
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1. Introduction

In recent years many simulated annealing algorithms have been proposed for the
solution of the continuous global optimization problem, i.e. for determining, or at
least approximating, the value f * defined as follows:

f * 5min f(x) ,
x[X

dwhere f is the objective function and X , R is the feasible region.
The name simulated annealing comes from a physical process called annealing,

the process for growing crystals, which can be simulated by the Metropolis Monte
Carlo method (see [13]). The simulated annealing idea was first introduced in the
field of combinatorial optimization independently in [4] and [9] and, lately, it has
been applied to continuous global optimization.

The general scheme of a simulated annealing algorithm is the following.

1. Let Y [ X be a given starting point, c a nonnegative constant, z 50 0 0

:h(Y , f(Y ))j and set k 5 0.0 0

2. Sample a point X from a given distribution D(?; Y , z ).k11 k k

3. Sample a uniform random number p in [0, 1] and set

X if p < A(Y , X , c )k11 k k11 k:Y 5 Hk11 Y otherwisek
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where A is a function with values in [0, 1] and c is a parameter called thek

temperature at iteration k.
:4. Set z 5 z < h(X , f(X ))j (the set z is the set of information collectedk11 k k11 k11 k

by the algorithm up to iteration k, i.e. the set of points at which the function
has been evaluated together with the corresponding function values).

:5. Set c 5 U(z → z ), where U is a nonnegative function.k11 z k11k11

:6. Check a stopping criterion and if it fails set k 5 k 1 1 and go back to Step 2.

In order to define a particular simulated annealing algorithm one must specify the
stopping criterion and the three functions D, A and U, which define respectively the
distribution of the next candidate point, the probability of accepting it as the next
iterate and the cooling schedule, i.e. the temperature, which is a parameter through
which the acceptance of the candidate points is controlled. A common choice for the
acceptance function A is the so-called Metropolis function

f(Y ) 2 f(X )k k11]]]]]A(Y , X , c ) 5 min 1, exp , (1)H H JJk k11 k ck

which always accepts descent steps, but also accepts with a positive probability
(unless c 5 0) ascent steps in order to avoid getting trapped in a local minimumk

which is not a global minimum. Note how the parameter c controls the acceptancek

of ascent steps: by decreasing c also the acceptance probability of ascent steps isk

decreased. Different choices for D and U have been proposed and computationally
tested in the literature (see e.g. [2, 3, 5, 6, 8, 15, 16]). Moreover, different conditions
under which convergence in probability to the global optimum of simulated
annealing algorithms can be established, have been presented (see e.g. [1, 7, 10 and
11]).

In this paper a convergence result is presented for a simulated annealing
algorithm based on a cooling schedule presented and computationally tested in [2],
but for which, to the author’s knowledge, no convergence result has appeared in the
literature. In Section 2 the details of the above mentioned algorithm will be
discussed, and the assumptions under which the convergence result can be
established will be presented and commented upon. In Section 3 the convergence in
probability of the algorithm will be proved. The convergence result is based on two
lemmas and one theorem whose proofs will be given in the Appendix.

2. A particular simulated annealing algorithm

In [2] a simulated annealing algorithm with the following characteristics has been
introduced. The next candidate point distribution D generates random points over
the boundary of a sphere of radius R with center in the current point Y ; thek

acceptance function A is the Metropolis function (1); the cooling schedule U defines
the temperature at iteration k as follows
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gˆc 5 a[ f(Y ) 2 f ] ,k k k

ˆwhere a and g are positive constants and f is an estimate of f * at iteration k. Notek
ˆthat the closer f(Y ) is to the estimate f of the global optimum value at iteration k,k k

the smaller is the temperature and, consequently, the probability of accepting ascent
steps. Such a cooling schedule has been also studied in [14] and [15].

The algorithm considered in this paper is the same as the one in [2] with the only
difference that the next candidate point distribution D is assumed to generate
random points over S(Y , R), i.e. over the whole sphere with radius R and center Y ,k k

ˆand not only on its boundary. Moreover, as an estimate f of the global optimumk

value, the value f * 2 t will be employed, where f * 5 minh f(Y ), . . . , f(Y )j is thek k k 1 k

record value, and ht j is a deterministic nonincreasing sequence converging to 0.k

Therefore, the cooling schedule will be the following

gc 5 a[ f(Y ) 2 f * 1 t ] . (2)k k k k

We will discuss the convergence in probability of such an algorithm, i.e. we will
prove that, under suitable assumptions

;e . 0 lim P[Y [ B ] 5 1 , (3)k e
k→`

where

B 5 hx [ X : f(x) < f * 1 ej .e

Before introducing the assumptions under which the convergence result will be
established, we compare (2) with the following cooling schedule, introduced in [10]
and also employed in [11]

]f(Y ) 2 f * if f(Y ) 2 f * .ek k k kc 5 (4)Hk t otherwisek

It has been proved that, under suitable assumptions, (3) holds when (4) is employed.
Both in (2) and in (4) the temperature depends on how close the function value is to
the current record f *. In (4) we switch to a deterministic temperature when we arek

]too close, within a distance e, to the current record. A consequence of this fact is
that, while we can always prove that

]lim P[Y [ B ] 5 1 ,k e
k→`

]for the fixed value e employed in (4), in order to prove (3) it is necessary to assume
]that e is below a threshold which is strictly problem dependent and cannot generally

be known in advance.
By employing (2) such a problem does not arise because the distance of the

function value in the current point from the current record and the deterministic
temperature t are merged into a unique function returning the value of thek

temperature at iteration k. We will show how to prove (3) when the cooling schedule
(2) is employed. It will actually turn out that (3) is true only if the parameter g is
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appropriately chosen. However, there is an important difference with respect to the
]choice of the parameter e in (4): while, as already commented, it is generally not

]possible to know in advance how to choose e in order to guarantee (3), an
appropriate choice of g seems to be much easier. In particular, we will see that in
many cases any g . 1 can be chosen.

Now we introduce the assumptions under which the convergence result will be
established. The first assumption is about the objective function f and the feasible
region X.

ASSUMPTION 1. X is convex, compact and full-dimensional, and the objective
function f is continuous.

This assumption is more restrictive than needed. In particular, the assumption of
convexity of X is too strong and may be relaxed, but, on the other hand, it will help
in proving the result without introducing too many technicalities.

The second assumption requires that f has only a finite number of global minima
over X.

ASSUMPTION 2. Let X* 5 hx [ X : f(x) 5 f *j, then uX*u 5 n , `.

Now let x* [ X*, i [ h1, . . . , nj be the ith global minimum of f over X. Then, for ei

small enough, the set B is partitioned into n disjoint connected componentse
iC ] x*, i [ h1, . . . , nj. Lete i

is(e) 5 min m(C ) , (5)e
i[(1,...,nj

where m denotes the Lebesgue measure. Then we introduce the following assump-
tion which restricts the possible choices for the constant g in the cooling schedule
(2).

ASSUMPTION 3. The constant value g in the cooling schedule (2) is such that

d2(1 /ae )
'd . 0 : m(B \B ) 1 e 5 o(s(e)) as e → 0 .g2de 1e e

Assumption 3 is an important one because it gives a condition which must be
satisfied by the constant g employed in the cooling schedule. In the next observation
we prove that, under some regularity conditions in the regions around the global
optima, any value g . 1 can be chosen. For simplicity, we only present the case in
which only one global optimum exists and belongs to the interior of the feasible
region X. However, the result can be extended to the case of multiple global optima,
possibly belonging to the boundary of X.

OBSERVATION 1. Assume that f has a unique global optimum x* over X
belonging to the interior of X. Moreover, assume that f is twice continuously
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differentiable in some neighbourhood of x* and that sufficient second order
optimality conditions are satisfied in x*. Then, Assumption 3 is satisfied by any
g . 1.

Proof. Let us consider the second-order Taylor expansion of f around x*

2f(x) 5 f * 1 (x 2 x*)H(x*)(x 2 x*) 1 o(ix 2 x*i ) , (6)

where H(x*) denotes the Hessian of f in x*. Consider the set

hx : (x 2 x*)H(x*)(x 2 x*) < ej .

Since, by assumption, H(x*) is positive definite, the Lebesgue measure of the set
d / 2above is r e for some positive constant r . Moreover, in view of (6), it followsd d

that
d / 2 d / 2s(e) 5 m(B ) 5 r e 1 o(e ) . (7)e d

Now let g . 1 and d 5 ( g 2 1) /2 . 0. We immediately note that for any a . 0

d2(1 /ae )e 5 o(s(e)) as e → 0 .

Therefore, we need only to prove that the Lebesgue measure of the set B \B isg2de 1e e

also o(s(e)). From (7) and the choice for the value of d it follows that

m(B \B ) 5 m(B ) 2 m(B )g2d g11 / 2e 1e e e 1e e

g11 / 2 d / 2 d / 2 d / 2
5 r [(e 1 e ) 2 e ] 1 o(e ) . (8)d

Therefore
d / 2 d d / 2 d / 2m(B \B ) 5 r e [(1 1 e ) 2 1] 1 o(e ) 5 o(s(e)) ,g2de 1e e d

as we wanted to prove.

From the proof of the observation we notice that, for g . 1, we can choose a
value d 5 ( g 2 1) /2 . 0 so that the proof that Assumption 3 holds basically reduces
to prove that the difference between the Lebesgue measures of a level set Be 1o(e )

and of the level set B decreases to 0 faster than the measure of B itself (see (8)).e e

This has been proven to be true under the conditions of the observation but it is also
true under much more general conditions.

Finally, we introduce the following assumption on the distribution D of the next
candidate point.

ASSUMPTION 4. For any x [ X, for any k and for any z , 'q, Q . 0 such thatk

;C # S(x, R) > X

qm(C) < D(C; x, z ) < Qm(C) .k

In the next section the convergence in probability of the algorithm under the above
assumptions will be proved.
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3. Convergence in probability of the algorithm

The proof that (3) holds under the cooling schedule (2) will follow the scheme
employed in Theorem 3 in [10] to prove (3) under the cooling schedule (4), but the
single steps of the proof will need to be adapted to the different cooling schedule.

In order to prove that (3) holds under the given assumptions and under the
cooling schedule (2), two lemmas are needed. The first lemma gives a lower bound
for the probability that Y is inside the set B given that Y belongs to this set, fork1T e k

eany fixed positive integer T. From now on the event hY [ B j will be denoted by Vk e k] eand its complement by V .k

LEMMA 1. Let Assumption 4 hold. Let
d2(1 /ae )v(e) 5 e 1 Qm(B \B ) ,g2de 1e e

where d is some positive constant. Then, given a positive integer T, there exists
e . 0 such that ;e < e , there exists a positive integer K 5 K (e, T ) such that1 1 1 1

;k > K1

e eP[V uV ] > 1 2 2Tv(e) .k1T k

Proof. See the Appendix.

The second lemma gives a lower bound for the probability that, for a given
constant N, Y belongs to the set B given that Y does not belong to this set andk1N e k

that the set B has been visited at least once in the first k iterations, i.e. the event Ee k

defined as follows

E 5 h'h < k : Y [ B j , (9)k h e

holds.

LEMMA 2. Let Assumptions 1, 2 and 4 hold. Let

4 diam(X)
]]]N 5 1 1 , (10) R

where diam(X) denotes the diameter of the convex set X. Then there exists e . 0 such2

that ;e < e , there exists a positive integer K 5 K (e) such that ;k > K2 2 2 2

]e eP[V uV , E ] > gs(e) ,k1N k k

where s(e) is defined in (5) and g is a positive constant.
Proof. See the Appendix.

Before the convergence proof, we need a further result proving that under the given
assumptions and under a suitable choice for the sequence ht j, the infinite sequence hY jk k

generated by the algorithm will visit the set B for any e . 0 with probability 1, i.e. thee

event E , defined in (9), has a probability converging to 1 as k → `.k
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THEOREM 1. Let

DF 5max f(x) 2 f * , (11)
x[X

and N be defined by (10). If Assumptions 1, 2 and 4 hold and

1 / g1 N DF
] ]]S Dt > , (12)F Gk a log k

then

lim P[E ] 5 1 ,k
k→`

where E is the event defined in (9).k

Proof. See the Appendix.

Now we are ready for the proof of convergence.

THEOREM 2. Let Assumptions 1, 2, 3 and 4 hold. Let t satisfy (12). Thenk

;e . 0 lim P[Y [ B ] 5 1 .k e
k→`

Proof. First we note that for any positive integer H and any k > H

e eP[V ] > P[V uE ]P[E ] .k k H H

Since, in view of Theorem 1, P[E ] → 1 as H → `, in order to prove (3) it is enough toH

prove that

ea (e) 5 P[V uE ] → 1 as k → ` .k k H

eWe note that a (e) 5 P[V uE ] is equal tok1N k1N H

]e e e ea (e)P[V uV , E ] 1 [1 2 a (e)]P[V uV , E ] ,k k1N k H k k1N k H

where N is the same as in Lemma 2. Therefore, it follows from Lemmas 1 and 2 that for
e small enough and k big enough

a (e) > [1 2 2Nv(e)]a (e) 1 [1 2 a (e)]gs(e) ,k1N k k

or, equivalently

a (e) 2 a (e) > gs(e) 2 [gs(e) 1 2Nv(e)]a (e) . (13)k1N k k

It also follows that

gs(e)
]]]]]a (e) , a (e) ⇒ a (e) . 5 j(e) ,k1N k k gs(e) 1 2Nv(e)
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and, in view of (13), the difference [a (e) 2 a (e)] is bounded from above byk k1N

[gs(e) 1 2Nv(e)]. Two cases are possible.
]

] ]1. 'k such that a (e) > j(e): then the sequence ha (e)j will never fall below thek k k>k

following limit

j(e) 2 [gs(e) 1 2Nv(e)] ;

2. the sequence ha (e)j is always below j(e): then the sequence is increasing andk

converges to a limit. By taking the limit for k → ` of both sides in (13), it follows
that

0 > gs(e) 2 [gs(e) 1 2Nv(e)] lim a (e) ,k
k→`

or, equivalently

lim a (e) > j(e) .k
k→`

In both cases we have that

lim a (e) > j(e) 2 [gs(e) 1 2Nv(e)] .k→` k]

Since, obviously, ;e . 0 and ;k it holds that a (e) < 1, and since a (e) is ak k

nondecreasing function of e, it follows that

1 >lim a (e) >lim lim a (e) >lim j(e) 2 [gs(e) 1 2Nv(e)] ,k→` k k→` k] ]e →0 e →0

where the limit on the right-hand side is equal to 1 under Assumption 3. It follows that

lim a (e) 5 1 ,k
k→`

as we wanted to prove.

4. Conclusion

In this paper a simulated annealing algorithm for continuous global optimization,
first introduced in [2], has been considered. It has been proved that, under suitable
assumptions, the algorithm is convergent. A cooling schedule, which depends on the
distance of the function value of the current iterate from an estimate of the global
optimum value f *, is employed. Here at each iteration an estimate has been
proposed based on a suitable decrease of the record value. One of the assumptions
introduced in order to guarantee convergence restricts the choice of the values of the
parameter g, appearing in the cooling schedule and controlling the speed at which
the temperature varies. It has been shown (see Observation 1) that, under some
regularity conditions, any value g . 1 can be chosen.
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Appendix

A. PROOF OF LEMMA 1

Let A , i 5 1, . . . , T, denote the event h f(Y ) < f(Y )j. It holds thatk1i k1i k1i21

T

e e e> A uV ⇒ V uV .k1i k k1T k
i51

Therefore
T

e e eF GP[V uV ] > P > A uV .k1T k k1i k
i51

The right-hand side of this inequality is equal to
i21

T
eUF GP P A > A , V . (14)k1i k1j k

j51i51

By definition the term in the product is equal to

i21

eUF G1 2 P f(Y ) . f(Y ) > A , V , (15)k1i k1i21 k1j k
j51

where the probability can be split, for any d . 0, in the sum of

i21

g2d eUF GP f(Y ) . f(Y ) 1 e > A , V , (16)k1i k1i21 k1j k
j51

and
i21

g2d eUF GP f(Y ) , f(Y ) < f(Y ) 1 e > A , V . (17)k1i21 k1i k1i21 k1j k
j51

We note that
i21

e e g g> A , V ⇒ V ⇒ c < a[e 1 t ] < a[e 1 t ] ,k1j k k1i21 k1i k1i k
j51

where the right-hand side of the last inequality follows from the nonincreasingness
of ht j. Therefore, an upper bound for the probability in (16) isk

g2d g2e /a [e 1t ]ke .

In view of Assumption 4, the probability in (17) can be bounded from above by
Qm(B \B ). Therefore, an upper bound for the probability in (15) is given byg2de 1e e

g2d g2e /a [e 1t ]kv (e) 5 e 1 Qm(B \B ) ,g2dk e 1e e
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and, from (14), it follows that

e e TP[V uV ] > [1 2 v (e)] .k1T k k

By observing that, since t ↓0, ;e . 0 : v (e)↓v(e) as k → `, and that v(e) → 0 ask k

e → 0, it follows that we can choose a small enough e . 0 such that ;e < e , there1 1

exists a positive integer K 5 K (e, T ) such that ;k > K1 1 1

T[1 2 v (e)] > 1 2 2Tv(e) ,k

from which the result of the lemma follows.

B. PROOF OF LEMMA 2

In order to prove Lemma 2 we first need some remarks. Let us consider y [ X\Be

*and let x* 5 x [ X* be the global minimum closest to y, i.e.v v( y)

d( y, x*) 5 min d( y, x*) .v i
i[h1,...,nj

Consider the segment [y, x*], which belongs to X in view of its convexity. Definev

the following sequence

(x* 2 y)R v]]]]w 5 y , w 5 w 1 , i 5 1, . . . , M( y) , (18)0 i i21 4 ix* 2 yiv

where

R 3
] ]H JM( y) 5 min j : d( y, x*) 2 j , R ,v 4 4

and the corresponding sequences of spheres S(w , R /8), i 5 1, . . . , M( y). Note thati

each point w in the sequence defined by (18) belongs to the segment [y, x*]. Thei v

following remark gives a bound from above for the length of the sequence.

REMARK 1. For any y [ X

4 diam(X)
]]]M( y) < 5 N 2 1 , (19) R

where N is the same as in (10).
Proof. The inequality (19) follows by the observation that

R 3
] ]H JM( y) < min j : diam(X) 2 j , R .4 4
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The next remark shows that a sphere with center in some point v [ S(w , R /8) andi

radius R completely contains the sphere S(w , R /8).i11

REMARK 2. For any i 5 1, . . . , M( y) 2 1, and for any v [ S(w , R /8)i

R
]S DS(v, R) $ S w , .i11 8

Proof. The remark immediately follows by the observation that the maximum
distance between a point v [ S(w , R /8) and any point belonging to S(w , R /8) is noti i11

2
]greater than d(w , w ) 1 R 5 R /2 , R.i i11 8

The following remark introduces a lower bound for the distance between any point in
S(w , R /8), i [ h1, . . . , M( y)j and x*, and an upper bound for the distance between anyi v

point in S(w , R /8) and x* .M( y) v

REMARK 3. For any v [ S(w , R /8), i [ h1, . . . , M( y)ji

3
]d(v, x*) > R ,v 8

and for any v [ S(w , R /8)M( y)

7
]d(v, x*) , R .v 8

Proof. Note that, by definition of M( y), for any i [ h1, . . . , M( y)j

R
]d(w , x*) > . (20)i v 2

Therefore, for any v [ S(w , R /8), i [ h1, . . . , M( y)ji

R 3
] ]d(v, x*) > d(w , x*) 2 > R .v i v 8 8

3
]Moreover, again by definition of M( y), it follows that d(w , x*) , R, and for anyM( y) v 4

v [ S(w , R /8)M( y)

R 3 R 7
] ] ] ]d(v, x*) < d(w , x*) 1 , R 1 5 R .v M( y) v 8 4 8 8
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In the following remark it is stated that any point belonging to one of the spheres
S(w , R /8) has a distance from any global optimum not smaller than R /8.i

REMARK 4. For any v [ S(w , R /8), i [ h1, . . . , M( y)j, and for any j [ h1, . . . , nji

R
]d(v, x*) > .j 8

3
]Proof. In view of Remark 3, d(v, x*) > R, thus we only need to prove the remarkv 8

for j ± v. By contradiction, we assume that there exist j ± v, t [ h1, . . . , M( y)j and
v [ S(w , R /8) such that d(v, x*) , R /8. It follows from the triangular inequality thatt j

R
]d( y, x*) < d( y, w ) 1 d(w , v) 1 d(v, x*) , d( y, w ) 1 .j t t j t 4

Since from (20) it follows that

R
]d( y, w ) < d( y, x*) 2 ,t v 2

then

R
]d( y, x*) < d( y, x*) 2 ,j v 4

thus contradicting the fact that x* is the global minimum closest to y.v

Then we need a remark which shows that the Lebesgue measure of the intersection
S(x, R) > X is, for any x [ X, a positive fraction of the Lebesgue measure of the sphere
S(x, R).

REMARK 5. Let X be convex, compact and full-dimensional. Then ;x [ X, 'b . 0
such that

m(S(x, r) > X)
]]]]inf > b .

m(S(x, r))r[(0,diam(X )]

Proof. See Lemma 1 in [12].

Finally, we need a remark which gives a lower bound for the probability of moving
from any point outside B at iteration k to the set B at iteration k 1 N, given any paste e

history z .k21
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REMARK 6. There exists a positive constant e such that ;e < e there exists a positive3 3

integer K 5 K (e) such that ;k > K , ;y [ X \B and ;z3 3 3 e k21

M( y)
e 2DF / lb(c )k1iP[V uY 5 y, z ] >hs(e) P e , (21)k1N k k21

i51

where DF is defined in (11), N is defined in (10), h is a positive constant and lb(c )k1i

denotes a lower bound for the temperature c .k1i

Proof. Let e be small enough so that

7 v]x [ X, d(x, x*) < R ⇒ S(x, R) $ C . (22)v e8

eA lower bound for P[V uY 5 y, z ] is given byk1N k k21

e e eP[V uY 5 y, z ]P[V uV , Y 5 y, z ] ,k1M( y)11 k k21 k1N k1M( y)11 k k21

which, on the other hand, in view of Lemma 1, can be bounded from below, for e small
enough and k big enough, by

eP[V uY 5 y, z ][1 2 2Nv(e)] . (23)k1M( y)11 k k21

For any i [ h1, . . . , M( y)j, let F denote the event hY [ S(w , R /8)j, where thek1i k1i i

points w are those defined in (18). Then, we obviously have that a lower bound for (23)i

is

M( y)

e UF G[1 2 2Nv(e)]P V , > F Y 5 y, z , (24)k1M( y)11 k1i k k21
i51

where the probability is equal to the product of

M( y)

e UF GP V > F , Y 5 y, z (25)k1M( y)11 k1i k k21
i51

and

i21
M( y) UF GP P F > F , Y 5 y, z . (26)k1i k1j k k21
i51 j51
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From Remark 3, (22), Assumption 4 and by definition of s(e), it follows that

M( y)

e vUF GP V > F , Y 5 y, z > qm(C ) > qs(e) . (27)k1M( y)11 k1i k k21 e
i51

In view of Assumption 4 and Remarks 2 and 5

i21

R 2DF / lb(c )k1iUF G ]S S DDP F > F , Y 5 y > qbm S w , e . (28)k1i k1j k i 8j51

Therefore, from (24)–(28) and recalling that v(e) → 0 as e → 0, it follows that for e

small enough and k big enough

M( y)
e 2DF / lb(c )k1iP[V uY 5 y, z ] >hs(e) P e ,k1N k k21

i51

for some positive constant h, as we wanted to prove.

Now we are ready for the proof of Lemma 2.
Proof. Let

]
D 5f 2 f * 5 min f(x) 2 f * . 0 . (29)

nx[X \ < S(x*,R / 8)i51 i

Note that in order to prove the lemma it is enough to prove that ;y [ X \Be

eP[V uY 5 y, E ] > gs(e) . (30)k1N k k

From Remark 4 and (29), it follows that for any i [ h1, . . . , M( y)j

F , E ⇒ c > D 2 e 1 t .k1i k k1i k1i

Therefore, for e < D /2, a lower bound lb(c ) for c , i [ h1, . . . , M( y)j, is given byk1i k1i

D /2 and, in view of Remark 6

eP[V uY 5 y, E ] > gs(e) ,k1N k k

for some positive constant g, as we wanted to prove.
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C. PROOF OF THEOREM 1

Obviously

ke ]P[E ] > P V , for some p [ 0, . . . , ,F H JGk pN  N

where N is defined in (10). Equivalently

p21
k / N

] ]e eUF GP[E ] > 1 2 P P V > V . (31)k pN jN
p50 j50

We note that an upper bound for the term in the productory is given by

p22

] ]e eUF Gsup P V Y 5 y, > V .pN ( p21)N jN
j50y[X \ Be

Note that, for any i [ h1, . . . , Nj

N DFg ]]]c > a(t ) > ,( p21)N1i ( p21)N1i log( pN)

where the last inequality follows from (12) and the nonincreasingness of ht j. Therefore,k

in view of Remark 6, it holds that

p22

1] ]e eUF G ]P V Y 5 y, > V < 1 2hs(e) .pN ( p21)N jN pNj50

By substitution in (31), it follows that

k / N
hs(e )
]O log 12S D

pNP[E ] > 1 2 e ,p50k

where the term in the summatory is asymptotic to 2hs(e)1 /( pN) as p → ` and,
consequently, the summatory diverges to 2` as k → `. Therefore

k / N
hs(e )
]O log 12S D

pN1 >lim P[E ] >lim 1 2 e 5 1 ,p50k
k→` k→`

from which the result of the theorem follows.
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